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Solutions are given for the distributions of current density, field
strength and electric field potential in the neighborhood of the point of
contact of two conducting media with different scalar electrical
conductivities o and Hall constants Ry. Problems of this type are
encountered in magnetohydrodynamic theory, and in semiconductor
physics, for example, in investigaring the fields in piecewise-inhomo-
geneous media or on the electrodes in magnetohydrodynamic channels
and electrical engineering apparatus, If one of the two media has
ideal properties o = «, Ry = 0, then within the framework of the
approximate theory (the induced magnetic field is neglected) the
problem reduces to finding an analytic function in the region occupied
by the second medium, and this can often be solved by carrying cut a
conformal mapping of the region ontc a polygon {1,2]. In other cases
the electric field in each medium depends jointly on the physical
properties and geometries of regions of the two media, and a solution
must be found which is joined at the contact. The theory of singular
integral equations [3,4] i3 a convenient mathematical tool forsolving
such problems.

1. We shall give a solution to the problem, assuming
that the electrical contact is between two electrically
conducting bodies. We shall assume that the region of
contact is small compared with the radius of curvature
of both bodies, so that each can be conveniently rep-
resented as a half-plane with a common boundary on
the segment ab (Fig. 1la, b).

We shall assume that the external magnetic field
H(0, 0,H;) is everywhere uniform, but is not the same
in the upper and lower half-planes in the general case,
and is in a direction normal to the current vector
j€x,y) and the electric field E(x, y); the magnetic field
arising from the currents under consideration will be
neglected. It turns out from the system of equations

j=oE— L jxH,
rot E = 0, divH = 0,

d]Vj = Ol

ot = RgoH  (1.1)

and the assumptions made that the current field satis~
fies the equations div j = 0 and rot j = 0. Thus, the
complex potential of the electric current F(z)

P T8 =@y — i y),
Fz) =Pz, py) +i0 (2,9 (z=z+ i),
al'(zy _ -
@ =) 1.2)

may be introduced just as in [5].

Here P and Q are the potential and force functions
of the current, respectively. )

We shall designate the half-plane Im z > 0 by S*,
and the half~plane Im z < 0 by 8™ and take for the
positive direction on the real axis that which leaves
the region 8 from the left.

We shall solve the problem of the field current
distribution for the current flowing through the con-

tact. We have the following boundary conditions: the
normal component of the current and the tangential

Fig. 1

component of the electric field are continuous over the
region of contact, while on the remaining sections of
the real axis the normal component of the current is
equal to zero in each region. These conditions lead

to the following boundary value problem (indices 1 and
2 refer to ST and 8™, respectively):

— il
Ro[LH10% j (@) = Re {15120 ju (a)],

1 2

Imji(zy=1Imj, {z), at y=0,

— i<z <I
Im 73 (z) = Im J» (z) = 0,

at y=0,

lz]>! at y=0. (1.3)
Here the complex form of Ohm's law (1.1) is em-

ployed:

—0 au . oU N
==
4L iov ( ox ¢ oy /' (1.4)

i(z)=Jx(z, y) —ify (&, y) =
where U is the electrostatic potential.

We must also indicate the position of the current
sources and sinks in S and §~. For the sake of simpli~
fying the formulas obtained below, we shall assume
that there is a source of finite intensity situated in
s* at the point z = e, and a sink in 8~ at the point z =
=, We then obtain the condition at infinity

iiz) =2 40

z

(i=1,2ywhen jz| »o. (1.5)

2. In order to solve the problem we introduce the
two piecewise~holomorphic functions

vyt (z) when sz &St Wit (z)=11(8),

1(7)= {‘Y{ (z) when z<5-, ¥~ (z) = 1 (2}
7 | (z) when 57, ¥ (Z):m,
2(2)_ Y, (z) when z&§-, ¥y (g =r(). (2.1}

We shall denote the normal current component at
the contact by h{x) and assume that it satisfies a Holder
boundary condition.

On the basis of the first andlast boundary conditions
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of (1.3) the functions ¥;(z) (i =1,2) may be expressed
in terms of h(x) using Schwarz's integral

1
1 ¢ h(x)d
\yg(z):TS (z)dw

r—z

qu(z):::‘_ism,

2.2)

T x— 12

Fig. 2

Clearly, these functions satisfy condition (1.5) at
infinity. Expanding the functions ¥,(z) and ¥4(z) at
infinitely distant points in the regions S and S~, re-
spectively, gives

Wy (z)=

27t ‘ z7? : "
= ~n—3 h(z)dz + 5 zh(z)de + ... whenz& S,
= —i

¥, (z) =

P s
=— S h(x)dz——g— S zh(zydz— ... when z<8-.(2.3)

~1 —i

Whence we find the values of the constants Cy; and
C21 in (1,5)
¢ 4
Cat= — S h(z)dz, Cu=— \ k(z)da,

—1

Oy = — Coy =7, (2.4)

where I is the magnitude of the total current flowing
through the contact which is a given quantity in the
problem, or the intensity of the source situated at the
point z =« in the region S+, which is the same thing.
Taking (2.1) and (2.2) into account, we represent the
second boundary condition of (1.3) in the form

1 —+ oyt "Ff (x) + 1 —ioT .- (:L‘) -

Gy . a1

— 1 "t‘iﬁ)z"fz lIfZ-x— (.’t) + 1— ifl)zfz \{rg— (.I)

3y 5]

—lLe<l  at y=o0. (2.5)

Hence, making use of the Sokhotskii-Plemel for-
mula, we obtain a homogeneous singular integral equa-
tion which must be satisfied by the function h(x):

A
(61009T5, — Got01Ty) 1 (x) + 3%62 5 };(_t_—)f: =0

{(—1 <= 1), (2.6)

This equation corresponds to the generalized linear
boundary value problem (Riemann's problem) [3,4]; for
the function ¥,(z) it has the form

. 31 - Gy - (S1w0aTs — Gaw0pT1) -
R A il A
1 (z) 51 =Gy — 1L (310:T2 — Gy0yT1) ~ * (x)

—i<r<l at y=0,

¥ (z) = ¥y (x) [e]>1 at y=u. (2.7)
Starting from the physical assumption that there

is an accumulation of current on the ends of the con-

tact, we find the solution of the boundary value prob-

lem in a class of functions having integrable singulari-

ties at the vertices a and b. By condition (1.5) this

solution vanishes at infinity:
Wi(g) = Cyy (2 Dt (2 — Dt

1 G10aTg — T201Ty
= —arctg ————-—"—
& g g 61+ Gy

{ 1
: 7 <e<7T
(:(z-H)-‘/rE (z——l)‘l/ﬂ"“:%—{—O(:‘L’) when lzl—»oo). (2.8)

According to (2.1) the function ¥(z) should satisfy
the condition

Yy () =¥, (2),

from which it follows that the constant C;; should be a
real quantity, From (2,8) we find all the required

fields in S+,
W T
‘ T 0 ‘{
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Fig. 3

The current distribution in S* is determined directly
by the function ¥,(z)

j1 (z) = Jix (JE, _1/) - ijlz/ (xv y) =

= Cy (2 it (s — )= whenz = 8%, (2.9)

and is found from the Sokhotskii-Plemel formulas on
the contact ab

V1 (x) — Vi (2)

].ly (1‘, O) =h (.72) = ___._T —

=Cp (I 42y (1 — 2y %

G103T s — GoWyT

610z )ZTI/Z (—i<=<h)

> ‘L1+(

fra (, 0) = Ei@)_J%‘h;@ B

1 -
= Gl—_,_*gz—cn (610972 — 6o, T1) (L 4 7)7"7° 3¢

12Ty — oty Ty
61+ G2

x (I — x)“’2*5[1+( )T/’ (—~ 1< e <) (2.10)
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The constant Cy; is determined from the condition

!
S jiy (2, 0)da = I,

(2.11)
1
Using the familiar formula
:
\ A+t — e gy
—1
_ 1 1 =
_1‘<_2__g>(7—§—e)—c—-osm (2.12)
we may easily verify that in fact
Cp =, (2.13)

Further, we find the electric field in St

oU- BU
Ei(z)= —7;[‘ Tyl‘:

= (4 + ioy1y) EIGT (z - 1)777" (z — 1) when:es*,(2.14)

U1(«I, y) = Ul(x(]a Yo) +
+ Re{—(1 + ior T8 (g 17 (e gy
171) o, (z+ 1) (z ) dz}
wﬁen T8, (2.15)

In formula (2.15) the integral is expressible in
terms of elementary functions only when the exponent
1/2 + € is a rational number. In this case we set 1/2 +
+¢& = p/y (p, 4 are natural numbers; p < g) and in
(2.15) we make the substitution

fz2— 1 \1/4
()" =1

This substution reduces (2.15) to the form

(2.16)

{2 @an

UL(0) = Us (1) + Re {— (1 + fom) 2| =1

°

Now expanding the integrand in simple fractions,
instead of (2.15) we have

Us(z,y) = Ur(zo, yo) -+

+Re {— (1 +ioym) o

q—1
1 Y 2niv (p—q)
72 exp[-—wq ]x (2.18)

2miv

x n Jexp (290 — (2= 1] [exp (20 — (2 50) -

Formulas similar to those already given may be
obtained for the region S™ also, while it turns out that
at the contact the relation

jlx(xyo):_j?x(xvo)v 4‘1<z<l (2'19)
holds, which is a consequence of the complete sym-
metry of the regions S* and S™ in the gemetrical re-
spect and in the way the boundary conditions are

specified.

We shall analyze the expressions for the current (2.9), (2.10)1in
the following cases,

Fig. 4

(a) Let there be no Hall effect in the two media (wiT; = Wy Tz = 0),
and let each of them have finite conductivities oy and o, . It then
follows from (2.9)—(2.10) that

. 1
1 (Z):n—]/_zﬁ when s & §t, (2.20)
i d i 0y=20
Ty (, 0) = wYE—= = (z, 0}=0,
—l<a <l @.21)

Figure 2 gives a qualitative picture of the lines of force (continuous
curves) and potential lines (broken curves) of the electric current
described by expression (2.20). The absence of a tangential current
component on the contact is explained by the symmetry of the current
distribution in the two media relative to the ordinate axis. The function
(2.21) is illustrated by curve 1 in Fig. 3.

(b) We shall consider the case when the Hall effect appears only in
the medium occupying the region sT, (wyTy # 0, wy Ty = 0), and the
conductivity of the two media is finite as before. The quantities
i), jly(x, 0) and jix(x,0) in S are now determined by the formulas

I1(z) = —i— (z

Loyt 1y whenz e ST

6:2w5%11% \~'%

—ae ()
—1<a <,

1 1
Ty, 0) = S~ I+ 25 (1

— Gylog Ty ]

71 (51 = G2) (t + =)
— <Lzl

PRI )—*/s
.

(z,0)= (51 + ©2)*

Tix

~/2~¢1 (l — x)_’/’”‘('l +

—_— \
(sl ; arctg%,0<16\<%). (2.22)

A qualitative picture of the current distribution for the region
S~, obtained from (2.22) and similar formulas, is given in Fig. 4.
The influence of the Hall effect is apparent in the bending of the
current lines in the segment ab and in an increase of their density along
one of the ends of the contact. The current concentration along this
end increases as the parameter w;7; increases,

Figure 8 gives curves 2, 3 and 4, which characterize the distribu-
tion of normal curent density in the segment ab for the three values
of the dimensionless parameter G, wiT1/(0y + 0,) = 1, 3 and 10,
respectively (current concentration along end a of the contact). For
a fixed value of the parameter w;7, the current concentration on the
contact may be weakened by decreasing the conductivity of the medium
occupying the region 8~
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(c) In the general case, when the Hall effect exists in the two
media, the qualitative picture of the current distribution is the same
as that given in Fig. 4, and all the points discussed in (b) remain
valid. They must, however, be supplemented as follows.

If the equation

LTy Wty
Gy Ga

(2.23)

holds, which, taking (1.1) into account, may also be represented in
the form

Ry Hy = Ry Ha, (2.24)

then from expressions (2.9), (2.10) we arrive at the formulas (2.20),
(2.21), describing the current distribution when the Hall effect is
absent from both media. This is explained by the fact that, observing
condition (2.24), the Hall phenomenon manifests itself equally in the
two media, and in this case exerts no influence on the curreat distri-
bution (the two media behave like a single conductor in which cuts
are made along the rays (=, =1), (1, «)),

Condition (2.24) may be considered as the limiting case of the two
inequalities

Ryyy I > RoyrHa, Byg Hy < By Ha, (2.25)
each of which indicates along which of the two ends of the contact the
current concentration arises.
A charge layer is formed ar the contact of the two media, which is
determined from the condition
By —Ey, =dmp,, —1<z<l

at y=0, (2.26)

or, if we make use of Ohm's law, from the second condition

0y’

1. Ty | 1, o
o T (@, 0) — =5 fax (2, 0) — 5= iy (&, 0) + —

T1 .
o J1x (%, 0) = 4np,,,

—ilze<!. (2.27)

Hence we find
i
Pe = "gats.5; (51~ 1)

X (1 A2y gy

I (1 + 02137 — 6% (1 -+ or123) | X

. C102Tp -— G Ty V2|1
xl_17<—61+—6;—‘—/‘} —I<a<l w g0 @29

Where the linear charge distribution on the segment ab is found all
the basic characteristics of the field in the neighborhood of the corri:
are determined,

The problem considered may easily be generalized to include the
case when contact between electrically conducting bodies occurs over
several segments.
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